hoi.core.get_entropy

hoi.core.get_entropy#

hoi.core.get_entropy(method='gc', **kwargs)[source]#

Get entropy function.

Parameters:
method{‘gc’, ‘gauss’, ‘binning’, ‘histogram’, ‘knn’, ‘kernel’}

Name of the method to compute entropy. Use either :

  • ‘gc’: gaussian copula entropy [default]. See

    hoi.core.entropy_gc()

  • ‘gauss’: gaussian entropy. See hoi.core.entropy_gauss()

  • ‘binning’: estimator to use for discrete variables. See

    hoi.core.entropy_bin()

  • ‘histogram’estimator based on binning the data, to estimate

    the probability distribution of the variables and then compute the differential entropy. For more details see hoi.core.entropy_hist()

  • ‘knn’: k-nearest neighbor estimator. See

    hoi.core.entropy_knn()

  • ‘kernel’: kernel-based estimator of entropy

    see hoi.core.entropy_kernel()

  • A custom entropy estimator can be provided. It should be a

    callable function written with Jax taking a single 2D input of shape (n_features, n_samples) and returning a float.

kwargsdict | {}

Additional arguments sent to the entropy function.

Returns:
fcncallable

Function to compute entropy on a variable of shape (n_features, n_samples)

Examples using hoi.core.get_entropy#

Introduction to core information theoretical metrics

Introduction to core information theoretical metrics

Comparison of entropy estimators for a multivariate normal

Comparison of entropy estimators for a multivariate normal

Comparison of entropy estimators for various distributions

Comparison of entropy estimators for various distributions

Comparison of entropy estimators with high-dimensional data

Comparison of entropy estimators with high-dimensional data