frites.conn.conn_fcd_corr#

frites.conn.conn_fcd_corr(conn, roi='roi', times='times', tskip=1, estimator=None, fill_diagonal=nan, dropna=False, verbose=None)[source]#

Compute the correlation on dynamic network.

This function can be used to compute the correlation between time points of a dynamic functional connectivity array, namely :

\[corr(conn_{t_{i}}, conn_{t_{j}})\]
Parameters
connxr.DataArray

3D array of dynamic functional connectivity of shape (n_samples, n_pairs, n_times)

roipython:str | ‘roi’

Name of the spatial dimension describing the names of the pairs of brain regions

timespython:str | ‘times’

Name of the temporal dimension

tskippython:int | 1

Number of time point to skip (equivalent to conn[…, ::tskip])

estimatorfrites.estimator | python:None

Estimator in order to measure the amount of information shared between two time-series coming from two distinct brain regions. Note that if you want to privide an estimator, be sure that it is made for continuous variables (mi_type=’cc’). By default the correlation is used

fill_diagonalpython:float | python:None

Value to use in order to fill the diagonal. By default, the diagonal is filled with nans

Returns
corrxr.DataArray

The correlation array of shape (n_samples, n_times, n_times)