frites.stats.cluster_correction_mcp#

frites.stats.cluster_correction_mcp(x, x_p, th, tail=1, **kwargs)[source]#

Cluster-based correction for MCP using non-parametric statistics.

This function can be used to compute the p-values, corrected for multiple comparisons using cluster-based. Note that this function detect clusters for each ROI but can be performed across multiple other dimensions (e.g frequencies, times etc.).

Parameters
xnumpy:array_like

Array of true effect size of shape (n_roi, …)

x_pnumpy:array_like

Array of permutations of shape (n_perm, n_roi, …)

thpython:float

The threshold to use

tail{-1, 0, 1}

Type of comparison. Use -1 for the lower part of the distribution, 1 for the higher part and 0 for both

kwargspython:dict | {}

Additional arguments are send to the mne.stats.cluster_level._find_clusters()

Returns
pvaluesnumpy:array_like

Array of p-values of shape (n_roi, n_times)