frites.core.ent_nd_g#
- frites.core.ent_nd_g(x, mvaxis=None, traxis=- 1, biascorrect=True, demeaned=False, shape_checking=True)[source]#
Entropy of a continuous variable.
- Parameters
- xnumpy:array_like
Array to consider for computing the entropy.
- mvaxis
python:int
|python:None
Spatial location of the axis to consider if multi-variate analysis is needed
- traxis
python:int
| -1 Spatial location of the trial axis. By default the last axis is considered
- biascorrectbool |
python:True
Specifies whether bias correction should be applied to the estimated MI
- demeanedbool |
python:False
Specifies whether the input data already has zero mean (true if it has been copula-normalized)
- shape_checkingbool |
python:True
Perform a reshape and check that x and y shapes are consistents. For high performances and to avoid extensive memory usage, it’s better to already have x and y with a shape of (…, mvaxis, traxis) and to set this parameter to False
- Returns
- minumpy:array_like
The mutual information with the same shape as x and y, without the mvaxis and traxis