frites.simulations.sim_local_cc_ss#

frites.simulations.sim_local_cc_ss(n_epochs=10, n_times=100, n_roi=1, cl_index=[40, 60], cl_cov=[0.8], cl_sgn=1, random_state=None)[source]#

Single-subject simulations for computing local MI (CC).

This function can be used for simulating local representations of mutual information between two continuous variables (CC) for a single subject.

Parameters
n_epochspython:int | 30

Number of trials

n_timespython:int | 100

Number of time points

n_roipython:int | 1

Number of ROI

cl_indexnumpy:array_like | [40, 60]

Sample indices where the clusters are located. Should be an array of shape (n_clusters, 2)

cl_covnumpy:array_like | [.8]

Covariance level between the data and the regressor variable. Should be an array of shape (n_clusters,)

cl_sgn{-1, 1}

Sign of the correlation. Use -1 for anti-correlated variables and 1 for correlated variables

random_statepython:int | python:None

Random state (use it for reproducibility)

Returns
xnumpy:array_like

Data array of shape (n_epochs, n_channels, n_times)

ynumpy:array_like

Regressor array of shape (n_epochs,)

roinumpy:array_like

Array of ROI names of shape (n_roi,)

timesnumpy:array_like

Time vector of shape (n_times,)