frites.conn.conn_pid#
- frites.conn.conn_pid(data, y, roi=None, times=None, mi_type='cc', gcrn=True, dt=1, verbose=None, **kw_links)[source]#
Compute the Partial Information Decomposition on connectivity pairs.
This function can be used to untangle how the information about a stimulus is carried inside a brain network.
- Parameters
- datanumpy:array_like
Electrophysiological data. Several input types are supported :
Standard NumPy arrays of shape (n_epochs, n_roi, n_times)
mne.Epochs
xarray.DataArray of shape (n_epochs, n_roi, n_times)
- ynumpy:array_like
The feature of shape (n_trials,). This feature vector can either be categorical and in that case, the mutual information type has to ‘cd’ or y can also be a continuous regressor and in that case the mutual information type has to be ‘cc’
- roinumpy:array_like |
python:None
Array of region of interest name of shape (n_roi,)
- timesnumpy:array_like |
python:None
Array of time points of shape (n_times,)
- mi_type{‘cc’, ‘cd’}
- Mutual information type. Switch between :
‘cc’ : if the y input is a continuous regressor
‘cd’ : if the y input is a discret vector with categorical integers inside
- gcrnbool |
python:True
Specify if the Gaussian Copula Rank Normalization should be applied. Default is True.
- dt
python:int
| 1 Number of successive time points to consider when computing MI. Increasing this number increase the smoothness of the results but will also increase computing time.
- kw_links
python:dict
| {} Additional arguments for selecting links to compute are passed to the function
frites.conn.conn_links()
- Returns
- mi_nodenumpy:array_like
The array of mutual infromation estimated on each node of shape (n_roi, n_times)
- uniquenumpy:array_like
The unique contribution of each node of shape (n_roi, n_times)
- infototnumpy:array_like
The total information in the network of shape (n_pairs, n_times)
- redundancynumpy:array_like
The redundancy in the network of shape (n_pairs, n_times)
- synergynumpy:array_like
The synergy in the network of shape (n_pairs, n_times)
See also
References
Williams and Beer, 2010: [21]
Examples using frites.conn.conn_pid
#
PID: Decomposing the information carried by pairs of brain regions