frites.stats.rfx_ttest#

frites.stats.rfx_ttest(mi, mi_p, center=False, sigma=0.001, ttested=False)[source]#

Perform the t-test across subjects.

Parameters
minumpy:array_like

A list of length n_roi of array of mutual information of shape (n_suj, n_times). If ttested is True, n_suj shoud be 1.

mi_pnumpy:array_like

A list of array of permuted mutual information of shape (n_perm, n_suj, n_times). If ttested is True, n_suj shoud be 1.

sigmapython:float | 0.001

Hat adjustment method, a value of 1e-3 may be a reasonable choice

center{python:False, ‘mean’, ‘median’, ‘trimmed’, ‘zscore’}

Re-center the time-series of effect arround 0 before computing the t-test. This parameters can be useful in case of a different number of data per brain region.

ttestedbool | python:False

Specify if the inputs have already been t-tested

Returns
t_obsnumpy:array_like

Array of true t-values of shape (n_suj, n_times)

tobs_surrnumpy:array_like

Array of permuted t-values of shape (n_perm, n_suj, n_times)

pop_meanpython:float

The value that have been used to compute the one-sample t-test. If the data have already been t-tested, this parameter is set to NaN

References

Giordano et al., 2017 [11]