frites.core.mi_model_1d_gd#

frites.core.mi_model_1d_gd(x, y, biascorrect=True, demeaned=False)[source]#

Mutual information between a Gaussian and a discrete variable in bits.

This method is based on ANOVA style model comparison. I = mi_model_gd(x,y) returns the MI between the (possibly multidimensional) Gaussian variable x and the discrete variable y.

Parameters
x, ynumpy:array_like

Gaussian arrays of shape (n_epochs,) or (n_dimensions, n_epochs). y must be an array of integers

biascorrectbool | python:True

Specifies whether bias correction should be applied to the estimated MI

demeanedbool | python:False

Specifies whether the input data already has zero mean (true if it has been copula-normalized)

Returns
ipython:float

Information shared by x and y (in bits)