frites.conn.conn_spec#
- frites.conn.conn_spec(data, freqs=None, metric='coh', roi=None, times=None, sfreq=None, foi=None, sm_times=0.5, sm_freqs=1, sm_kernel='hanning', mode='morlet', n_cycles=7.0, mt_bandwidth=None, decim=1, kw_cwt={}, kw_mt={}, block_size=None, n_jobs=-1, verbose=None, dtype=<class 'numpy.float32'>, mean_trials=False, **kw_links)[source]#
Wavelet-based single-trial time-resolved spectral connectivity.
- Parameters
- datanumpy:array_like
Electrophysiological data. Several input types are supported :
Standard NumPy arrays of shape (n_epochs, n_roi, n_times)
mne.Epochs
xarray.DataArray of shape (n_epochs, n_roi, n_times)
- metric
python:str
| “coh” Which connectivity metric. Use either :
‘coh’ : Coherence
‘plv’ : Phase-Locking Value (PLV)
‘sxy’ : Cross-spectrum
By default, the coherenc is used.
- freqsnumpy:array_like
Array of central frequencies of shape (n_freqs,).
- roinumpy:array_like |
python:None
ROI names of a single subject. If the input is an xarray, the name of the ROI dimension can be provided
- timesnumpy:array_like |
python:None
Time vector array of shape (n_times,). If the input is an xarray, the name of the time dimension can be provided
- sfreq
python:float
|python:None
Sampling frequency
- foinumpy:array_like |
python:None
Extract frequencies of interest. This parameters should be an array of shapes (n_foi, 2) defining where each band of interest start and finish.
- sm_times
python:float
| .5 Number of points to consider for the temporal smoothing in seconds. By default, a 500ms smoothing is used.
- sm_freqs
python:int
| 1 Number of points for frequency smoothing. By default, 1 is used which is equivalent to no smoothing
- kernel{‘square’, ‘hanning’}
Kernel type to use. Choose either ‘square’ or ‘hanning’
- mode{‘morlet’, ‘multitaper’}
Spectrum estimation mode can be either: ‘multitaper’ or ‘morlet’.
- n_cyclesnumpy:array_like | 7.
Number of cycles to use for each frequency. If a float or an integer is used, the same number of cycles is going to be used for all frequencies
- mt_bandwidthnumpy:array_like |
python:None
The bandwidth of the multitaper windowing function in Hz. Only used in ‘multitaper’ mode.
- decim
python:int
| 1 To reduce memory usage, decimation factor after time-frequency decomposition. default 1 If int, returns tfr[…, ::decim]. If slice, returns tfr[…, decim].
- kw_cwt
python:dict
| {} Additional arguments sent to the mne-function :py:`mne.time_frequency.tfr_array_morlet`
- kw_mt
python:dict
| {} Additional arguments sent to the mne-function :py:`mne.time_frequency.tfr_array_multitaper`
- block_size
python:int
|python:None
Number of blocks of trials to process at once. This parameter can be use in order to decrease memory load. If None, all trials are used. If for example block_size=2, the number of trials are subdivided into two groups and each group is process one after the other.
- n_jobs
python:int
| 1 Number of jobs to use for parallel computing (use -1 to use all jobs). The parallel loop is set at the pair level.
- kw_links
python:dict
| {} Additional arguments for selecting links to compute are passed to the function
frites.conn.conn_links()
- Returns
- conn
xarray.DataArray
DataArray of shape (n_trials, n_pairs, n_freqs, n_times)
- conn
See also