frites.conn.conn_te#
- frites.conn.conn_te(data, times=None, roi=None, min_delay=0, max_delay=30, step_delay=1, return_delays=False, gcrn=True, sfreq=None, n_jobs=1, verbose=None, **kw_links)[source]#
Compute the across-trials transfer entropy (TE).
- Parameters
- datanumpy:array_like
Electrophysiological data. Several input types are supported :
Standard NumPy arrays of shape (n_epochs, n_roi, n_times)
mne.Epochs
xarray.DataArray of shape (n_epochs, n_roi, n_times)
- timesnumpy:array_like |
python:None
Time vector array of shape (n_times,). If the input is an xarray, the name of the time dimension can be provided
- roinumpy:array_like |
python:None
ROI names of a single subject. If the input is an xarray, the name of the ROI dimension can be provided
- max_delay
python:int
| 30 Number of time points defining where to stop looking at in the past. Increasing this maximum delay input can lead to slower computations
- step_delay
python:int
| 1 Step between delays to test. By default, test every delays
- return_delaysbool |
python:False
Specify whether the returned TE should be average across delays (False) or not (True).
- sfreq
python:float
|python:None
Sampling frequency
- gcrnbool |
python:True
Specify if the Gaussian Copula Rank Normalization should be applied. Default is True.
- n_jobs
python:int
| 1 Number of jobs to use for parallel computing (use -1 to use all jobs). The parallel loop is set at the pair level.
- kw_links
python:dict
| {} Additional arguments for selecting links to compute are passed to the function
frites.conn.conn_links()
- Returns
- tenumpy:array_like
The TE array of shape (n_pairs, max_delay, time - max_delay) if return_delays is True or (n_pairs, time - max_delay) if False.
See also